lunes, 26 de enero de 2009

Bisectriz, Baricentro, Construcción con Regla y Compás

Bisectriz
La bisectriz de un ángulo es la recta que divide el ángulo en dos partes iguales.
Propiedad: los puntos de la bisectriz son equidistantes a los dos lados (rectas) del ángulo.
Recíprocamente, dos rectas, al cruzarse, determinan cuatro ángulos cóncavos. Cada uno de ellos define una bisectriz. Estas bisectrices resultan ser el lugar geométrico de los puntos equidistantes de las dos rectas. Este resultado se establece fácilmente observando que cada bisectriz es el eje de simetría de su ángulo: la simetría axial respecto de una bisectriz deja el ángulo invariante.

En la figura, la bisectriz interior al ángulo xOy (en amarillo) es (zz'), y la exterior es (ww'). Se cortan formando un ángulo recto. En efecto, si llamemos a la medida de xOz, y b la de yOw, observamos que 2a + 2b es la medida del ángulo xOx' , que es plano. Dividimos por 2: zOw mide a + b = 90º.
Baricentro
Sean A1,... An n puntos, y m1,... mn n, números (m como masa ). Entonces el baricentro de los ( Ai, mi ) es el punto G definido como sigue:
Esta definición depende del punto O, que puede ser cualquiera. Si se toma el origen del plano o del espacio, se obtiene las coordenadas del baricentro, como promedio ponderado por los mi, de las coordenadas de los puntos Ai:
La definición anterior no equivale a la fórmula siguiente, mucho menos práctica para el cálculo vectorial, pues prescinde de las fracciones (se obtiene tomando O = G):

Regla y compás
La construcción con regla y compás[1] es el trazado de puntos, segmentos de recta y ángulos usando exclusivamente una regla y compás idealizados. La geometría clásica griega impuso esa norma para las construcciones, aunque los griegos también investigaron las que pueden obtenerse con instrumentos menos básicos.
A la regla se le supone longitud infinita, carencia de marcas que permitan medir o trasladar distancias, y un solo borde. Del compás se supone que se cierra súbitamente cuando se separa del papel, de manera que no puede utilizarse directamente para trasladar distancias, porque "olvida" la separación de sus puntas en cuanto termina de trazar la circunferencia. Esta restricción del compás parece muy incómoda para los usuarios de compases reales, pero carece por otro lado de importancia matemática, porque el traslado de distancias se puede realizar de forma indirecta.
Cualquier punto que sea construible usando regla y compás puede conseguirse también usando únicamente compás; lo que evidentemente no se puede hacer es trazar el segmento de recta entre dos puntos previamente construidos. Como se verá, algunos problemas de geometría plana clásica imponen la restricción de "sólo compás".

No hay comentarios:

Publicar un comentario en la entrada